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1. INTRODUCTION

The theory of fractional differential equations has been
realized that it has very useful models for studying and
understanding the various disciplines and processes of
engineering applications. The development and improve-
ment of this theory are very important for math and
other areas of modern science. The history of fractional
order derivative and fractional order differential equations
goes back to the 17th century. It had always attracted
the interest of many famous mathematicians, including
L’ Hospital, Leibnitz, Liouville, Riemann, Grünwald and
Letnikov. Please See Kilbas et al. (2006), Lakshmikantham
et al. (2009), Podlubny (1999) and Samko et al. (1993).
In recent decades, fractional order differential equations
have been found to be a powerful tool some fields, such
as physics, mechanics, and engineering and it was realized
that the derivatives of non-integer order provide an perfect
framework for modelling of the real world applications in
related disciplines from physics, chemistry and engineering
[Kilbas et al. (2006) and Samko et al. (1993)].

The strict stability criteria had been studied by Laksh-
mikantham et al. (2001) and Yakar (2007). We have inves-
tigated that the strict stability criteria between two unper-
turbed differential systems with different initial time and
initial position of fractional order with initial time differ-
ence . The differential operators are taken in the Riemann-
Liouville and Caputo’s sense and the initial conditions
are specified according to Caputo’s suggestion [Caputo
(1967)], thus allowing for interpretation in a physically
meaningful way [Kilbas et al. (2006), Lakshmikantham
et al. (2009), Podlubny (1999) and Samko et al. (1993)].

⋆ The authors are very thankful to Gebze Institute of Technology
and Yildiz Technical University for their supports and referees for
their precious articles, valuable suggestions and comments.

The initial time difference stability is very important for
dynamic systems. It has been worked by Lakshmikantham
and Vatsala [Lakshmikantham et al. (2009)] and Yakar
[Shaw et al. (1999, 2000), Yakar (2010), Yakar (2007),
Yakar et al. (2005), Yakar et al. (2008) and Yakar et
al. (2009)]. We develop initial time difference fractional
strict stability criteria for unperturbed fractional order
differential systems with Caputo’s derivative. We estab-
lish comparison results for unperturbed fractional order
differential systems with respect to another unperturbed
fractional order differential systems which have different
initial position and initial time. The difference of these
systems is that they have different initial conditions. The
Lyapunov stability is with respect to null solution. The
difference of these definitions and results from Lyapunov
stability [Lakshmikantham et al. (1989), Lakshmikantham
et al. (2009) and Lakshmikantham et al. (2001)] is that
these systems stability investigates with respect to another
unperturbed fractional differential systems which have dif-
ferent initial position and initial time.

2. DEFINITION AND NOTATION

The definition of Caputo’ s and Reimann-Liouville’s frac-
tional derivatives

cDqx =
1

Γ (1− q)

∫ t

t0

(t− s)
−q

x′(s)ds, t0 ≤ t ≤ T (2.1)

Dqx =
1

Γ (p)

(
d

dt

∫ t

τ0

(t− s)
p−1

x(s)ds

)
, t0 ≤ t ≤ T

(2.2)
order of 0 < q < 1 , and p + q = 1 where Γ denotes the
Gamma function.

The main advantage of Caputo’s approach is that the
initial conditions for fractional order differential equations



with Caputo derivative take on the same form as that
of ordinary differential equations with integer derivatives
and another difference is that the Caputo derivative for a
constant C is zero, while the Riemann-Liouville fractional
derivative for a constant C is not zero but equals to

DqC = C(t−τ0)
−q

Γ(1−q) . By using (2.1) and therefore,

cDqx(t) = Dq [x(t)− x(t0)] (2.3)

cDqx(t) = Dqx(t)− x(t0)

Γ (1− q)
(t− t0)

−q
(2.4)

In particular, if x(t0) = 0, we obtain
cDqx(t) = Dqx(t). (2.5)

Hence, we can see that Caputo’ s derivative is defined
for functions for which Riemann-Liouville fractional order
derivative exists.

Consider the initial value problems of the fractional order
differential equations with Caputo’s fractional derivative

cDqx = f(t, x), x(t0) = x0 for t ≥ t0, t0 ∈ R+ (2.6)
cDqy = f(t, y), y(τ0) = y0 for t ≥ τ0 ≥ t0 (2.7)

where x0 = limt→t0 D
q−1x(t) and y0 = limt→τ0 D

q−1y(t)
exist and f ∈ C[[t0, τ0 + T ] × Rn,Rn]; satisfy a local
Lipschitz condition on the set R+ × Sρ, Sρ = [x ∈ Rn :
∥x∥ ≤ ρ < ∞] and f(t, 0) = 0 for t ≥ 0.

We assume that we have sufficient conditions to the
existence and uniqueness of solutions through (t0, x0) and
(τ0, y0). If f ∈ C[[t0, τ0 + T ] × Rn,Rn] and x(t) is the
solution of the system (2.6) where cDqx is the Caputo
fractional order derivative of x as in (2.1), then it also
satisfies the Volterra fractional order integral equation

x(t) = x0+
1

Γ (q)

∫ t

t0

(t− s)
q−1

f(s, x(s))ds, t0 ≤ t ≤ t0+T

(2.8)
and that is every solution of (2.6) is also a solution of (2.8),
for detail please see Lakshmikantham et al. (2009).

Let us give the definition of the strict stability criteria
for unperturbed fractional differential systems with initial
time difference.

Definition 2.1: The solution y (t, τ0, y0) of the fractional
order differential system (2.7) through (τ0, y0) is said to be
initial time difference strict stable in fractional case with
respect to the solution x (t− η, t0, x0), where x (t, t0, x0)
is any solution of the fractional order differential system
(2.6) for t ≥ τ0 ≥ 0, t0 ∈ R+ and η = τ0 − t0. If given any
ϵ1 > 0 and τ0 ∈ R+ there exist δ1 = δ1 (ϵ1, τ0) > 0 and
δ2 = δ2 (ϵ1, τ0) > 0 such that

∥y (t, τ0, y0)− x (t− η, t0, x0)∥ < ϵ1 for t ≥ τ0
whenever ∥y0 − x0∥ < δ1 and |τ0 − t0| < δ2 and, for
δ∗1 < δ1 and δ∗2 < δ2 there exist ϵ2 < min {δ∗1 , δ∗2} such
that

∥y (t, τ0, y0)− x (t− η, t0, x0)∥ > ϵ2 for t ≥ τ0
whenever ∥y0 − x0∥ > δ∗1 and |τ0 − t0| > δ∗2 .

Definition 2.2: If δ1, δ2 and ϵ2 in Definition 2.1 are
independent of τ0, then the solution y (t, τ0, y0) of the
system (2.7) is initial time difference uniformly strict

stable in fractional case with respect to the solution
x (t− η, t0, x0) for t ≥ τ0.

Definition 2.3: The solution y (t, τ0, y0) of the system
(2.7) through (τ0, y0) is said to be initial time difference
strictly attractive in fractional case with respect to the
solution x (t− η, t0, x0), where x (t, t0, x0) is any solution
of the system (2.6) for t ≥ τ0 ≥ 0, t0 ∈ R+ and η = τ0− t0.
If given any α1 > 0, γ1 > 0, ϵ1 > 0 and τ0 ∈ R+, for every
α2 < α1 and γ2 < γ1, there exist ϵ2 < ϵ1, T1 = T1 (ϵ1, τ0)
and T2 = T2 (ϵ1, τ0) such that

∥y (t, τ0, y0)− x (t− η, t0, x0)∥ < ϵ1 for T1+τ0 ≤ t ≤ T2+τ0

whenever ∥y0 − x0∥ < α1 and |τ0 − t0| < γ1 and

∥y (t, τ0, y0)− x (t− η, t0, x0)∥ > ϵ2 for T2+τ0 ≥ t ≥ T1+τ0

whenever ∥y0 − x0∥ > α2 and |τ0 − t0| > γ2.

If T1and T2 in Definition 2.3 are independent of τ0, then
the solution y(t, τ0, y0) of the system (2.7) is initial time
difference uniformly strictly attractive stable with respect
to the solution x(t− η, t0, x0) for t ≥ τ0.

Definition 2.4: The solution y (t, τ0, y0) of the system
(2.7) through (τ0, y0) is said to be initial time difference
strictly asymptotically stable in fractional case with re-
spect to the solution x (t− η, t0, x0) if Definition 2.3 satis-
fies and the solution y (t, τ0, y0) of the system (2.7) through
(τ0, y0) is initial time difference strictly stable with respect
to the solution x (t− η, t0, x0).

If T1and T2 in Definition 2.3 are independent of τ0,
then the solution y(t, τ0, y0) of the system (2.7) is initial
time difference uniformly strictly asymptotically stable in
fractional case with respect to the solution x(t− η, t0, x0)
for t ≥ τ0.

Definition 2.5: For any real-valued function V ∈ C[R+×
Rn,R+], we define the fractional order Dini derivatives in
Caputo’s sense

cDq
+V (t, x) = lim

h→0+
sup

1

hq
[V (t, x)−V (t−h, x−hqf(t, x))]

where x(t) = x (t, t0, x0) for (t, x) ∈ R+ × Rn.

Definition 2.6: For a real-valued function V (t, x) ∈
C[R+ × Rn,R+] we define the generalized fractional or-
der derivatives (Dini-like derivatives) in Caputo’ s sense
c
∗D

q
+V (t, y − ∼

x) as follows

c
∗D

q
+V (t, y − ∼

x)

= lim
h→0+

sup[
V (t, y − ∼

x)− V (t− h, y − ∼
x − hq(f(t, y)−

∼
f (t,

∼
x)))

hq
]

for (t, x) ∈ R+ × Rn.

Definition 2.7: K is said to be the class K set of functions
such that

K := [a : a ∈ C([0, ρ],R+), a is strictly monotone
increasing and a(0) = 0].



3. MAIN RESULTS

In this section we obtain the strict stability concepts with
initial time difference for fractional differential equations
parallel to the Lyapunov’s results.

Theorem 3.1: Assume that

(A1) for each µ , 0 < µ < ρ, Vµ ∈ C[R+ × Sρ,R+] and Vµ

is locally Lipschitzian in z and for (t, z) ∈ R+ × Sρ and
∥z∥ ≥ µ ,

b1(∥z∥) ≤ Vµ(t, z) ≤ a1(∥z∥), a1, b1 ∈ K

c
∗D

q
+Vµ(t, z) ≤ 0; (3.1)

(A2) for each θ, 0 < θ < ρ, Vθ ∈ C[R+ × Sρ,R+] and Vθ

is locally Lipschitzian in z and for (t, z) ∈ R+ × Sρ and
∥z∥ ≤ θ,

b2(∥z∥) ≤ Vθ(t, z) ≤ a2(∥z∥), a2, b2 ∈ K

c
∗D

q
+Vθ(t, z) ≥ 0; (3.2)

where z(t) = y(t, τ0, y0) − x(t − η, t0, x0) for t ≥
τ0, y(t, τ0, y0) of the system (2.7) through (τ0, y0) and x(t−
η, t0, x0), where x(t, t0, x0) is any solution of the system
(2.6) for t ≥ τ0 ≥ 0, t0 ∈ R+ and η = τ0 − t0.

Then the solution y(t, τ0, y0) of the system (2.7) is the
initial time difference strictly stable in fractional case
with respect to x(t − η, t0, x0) of the system (2.6) for
t ≥ τ0 ≥ 0, t0 ∈ R+ and η = τ0 − t0.

Proof of Theorem 3.1: Let us assume that 0 < ϵ1 < ρ
and τ0 ∈ R+. Let us choose that δ1 = δ1(ϵ1, τ0) > 0 such
that

a1(δ1) < b1(ϵ1) (3.3)

since we have b1(ϵ1) ≤ a1(δ1) in (A1). Then we claim that

∥y(t, τ0, y0)− x(t− η, t0, x0)∥ < ϵ1 for t ≥ τ0 (3.4)

whenever ∥y0 − x0∥ < δ1 and |τ0 − t0| < δ2.

If (3.4) is not true, then there exist t1 > t2 > τ0 and
the solution of (2.6) and by using (3.1) with ∥y0 − x0∥ <
δ1, |τ0 − t0| < δ2 satisfying∥∥∥y(t1)− ∼

x(t1)
∥∥∥= ϵ1,

∥∥∥y(t2)− ∼
x(t2)

∥∥∥ = δ1

and δ1 ≤
∥∥∥y(t)− ∼

x(t)
∥∥∥ ≤ ϵ1 for t ∈ [t2, t1]

where
∼
x(t) = x(t− η, t0, x0).

Let us set µ = δ1, we can obtain that

b1(ϵ1) = b1(
∥∥∥y(t1)− ∼

x(t1)
∥∥∥) ≤ Vµ(t1, y(t1)−

∼
x(t1))

≤ Vµ(t2, y(t2)−
∼
x(t2))

≤ a1(
∥∥∥y(t2)− ∼

x(t2)
∥∥∥) = a1(δ1)

b1(ϵ1)≤ a1(δ1)

which contradicts with (3.3). Hence, (3.4) is valid.

Now let 0 < δ∗1 < δ1, 0 < δ∗2 < δ2 and ϵ2 < δ = min{δ∗1 , δ∗2}
such that

a2(ϵ2) < b2(δ). (3.5)

since we have a2(ϵ2) ≥ b2(δ) in (A2). Then we can prove
that

ϵ2 < ∥y(t, τ0, y0)− x(t− η, t0, x0)∥ < ϵ1 for t ≥ τ0 (3.6)

whenever δ∗1 < ∥y0 − x0∥ < δ1 and δ∗2 < |τ0 − t0| < δ2.

In fact, if (3.6) is not true, then there would exist t1 >
t2 > τ0 and the solution of (2.6) and by using (3.2) with
δ∗1 < ∥y0 − x0∥ < δ1, δ

∗
2 < |τ0 − t0| < δ2 satisfying∥∥∥y(t1)− ∼

x(t1)
∥∥∥= ϵ2,

∥∥∥y(t2)− ∼
x(t2)

∥∥∥ = δ

and
∥∥∥y(t)− ∼

x(t)
∥∥∥ ≤ δ for t ∈ [t2, t1]. (3.7)

Let us set θ = δ and by using (A2), we get

a2(ϵ2) = a2(
∥∥∥y(t1)− ∼

x(t1)
∥∥∥) ≥ Vθ(t1, y(t1)−

∼
x(t1))

≥ Vθ(t2, y(t2)−
∼
x(t2))

≥ b2(
∥∥∥y(t2)− ∼

x(t2)
∥∥∥) = b2(δ)

a2(ϵ2)≥ b2(δ)

which contradicts with (3.5). Thus (3.6) is valid. Then the
solution y(t, τ0, y0) of the system (2.7) through (τ0, y0) is
initial time difference strictly stable in fractional case with
respect to the solution x(t− η, t0, x0) for t ≥ τ0.

This completes the proof of Theorem 3.1.

If δ1, δ2 and ϵ2 is independent of τ0, then the solution
y (t, τ0, y0) of the system (2.7) is initial time difference
uniformly strict stable in fractional case with respect to
the solution x (t− η, t0, x0) for t ≥ τ0.

Theorem 3.2: Assume that

(A1) for each µ , 0 < µ < ρ, Vµ ∈ C[R+ × Sρ,R+] and Vµ

is locally Lipschitzian in z and for (t, z) ∈ R+ × Sρ and
∥z∥ ≥ µ ,

b1(∥z∥) ≤ Vµ(t, z) ≤ a1(∥z∥), a1, b1 ∈ K,

c
∗D

q
+Vµ(t, z) ≤ −c1(∥z∥), c1 ∈ K; (3.8)

(A2) for each θ, 0 < θ < ρ, Vθ ∈ C[R+ × Sρ,R+] and Vθ

is locally Lipschitzian in z and for (t, z) ∈ R+ × Sρ and
∥z∥ ≤ θ,



b2(∥z∥) ≤ Vθ(t, z) ≤ a2(∥z∥), a2, b2 ∈ K,

c
∗D

q
+Vθ(t, z) ≥ −c2(∥z∥) c2 ∈ K; (3.9)

where z(t) = y(t, τ0, y0) − x(t − η, t0, x0) for t ≥
τ0, y(t, τ0, y0) of the system (2.7) through (τ0, y0) and x(t−
η, t0, x0), where x(t, t0, x0) is any solution of the system
(2.6) for t ≥ τ0 ≥ 0, t0 ∈ R+ and η = τ0 − t0.

Then the solution y(t, τ0, y0) of the system (2.7) through
(τ0, y0) is the initial time difference uniformly strictly
asymptotically stable in fractional case with respect to
x(t − η, t0, x0) of the solution of the system (2.6) for
t ≥ τ0 ≥ 0, t0 ∈ R+ and η = τ0 − t0.

Proof of Theorem 3.2: We note that (3.8) implies
(3.1). However, (3.9) does not yield (3.2). As a result of
these, we obtain because of (3.8) only uniformly stability
of unperturbed systems with initial time difference with
respect to x(t− η, t0, x0) that is for given any ϵ1 ≤ ρ and
τ0 ∈ R+ there exist δ10 = δ10(ϵ1) > 0 and δ20 = δ20(ϵ1) >
0 such that

∥y(t, τ0, y0)− x(t− η, t0, x0)∥ < ϵ1 for t ≥ τ0 .

whenever ∥y0 − x0∥ < δ10and |τ0 − t0| < δ20

To prove the conclusion of Theorem 3.2 we need to show
that the solution y(t, τ0, y0) of the system (2.7) through
(τ0, y0) for t ≥ τ0 is strictly uniformly attractive in frac-
tional case with respect to x(t− η, t0, x0) for this purpose
and for t ≥ τ0, let ϵ1 = ρ and set δ10 = δ1(ρ) and δ20 =
δ2(ρ) so that (3.10) yields ∥y(t, τ0, y0)− x(t− η, t0, x0)∥ <
ρ for t ≥ τ0 whenever ∥y0 − x0∥ < δ1 and |τ0 − t0| < δ2.

Let ∥y0 − x0∥ < δ10 and |τ0 − t0| < δ20. We show, using
standard argument, that there exists a t∗ ∈ [τ0, τ0+T ], we

choose T = T (ϵ, τ0) ≥
(

a1(max{δ10,δ20})
c1(min{δ1,δ2}) Γ (q + 1)

) 1
q

where

δ10 and δ20 are the numbers corresponding to ϵ1 in (3.1.10)
that is in stability of unperturbed systems with initial
time difference with respect to x(t − η, t0, x0) such that
∥y(t∗, τ0, y0)− x(t∗ − η, t0, x0)∥ < δ1 , t∗ ≥ τ0 for any so-
lutions of the systems (2.1.1) and (2.1.3) with ∥y0 − x0∥ <
δ10 and |τ0 − t0| < δ20. If this is not true, we will have
∥y(t∗, τ0, y0)− x(t∗ − η, t0, x0)∥ ≥ δ1 for t∗ ∈ [τ0, τ0 + T ].
Then, µ = δ1 and using (A1) with (3.1.8), we have in view
of the choice of T,

0< b1(δ1) ≤ b1(
∥∥∥y(τ0 + T )− ∼

x(τ0 + T )
∥∥∥)

≤ Vµ(τ0 + T, y(τ0 + T )− ∼
x(τ0 + T ))

≤ Vµ(τ0, y0 − x0)

− 1

Γ (q)

∫ τ0+T

τ0

(t− s)
q−1

c1(
∥∥∥y(s)− ∼

x(s)
∥∥∥)ds

≤ a1(max{δ10, δ20})−
c1(min{δ1, δ2})

Γ (q)

∫ τ0+T

τ0

(t− s)
q−1

ds

≤ a1(max{δ10, δ20})−
c1(min{δ1, δ2})

Γ (q + 1)
T q

≤ 0

This contradiction implies that there exist a t∗ ∈ [τ0, τ0 +
T ] satisfying ∥y(t∗, τ0, y0)− x(t∗ − η, t0, x0)∥ < δ1 for t

∗ ≥
τ0. Because of the uniform stability y(t, τ0, y0) of (2.7) with
initial time difference with respect to x(t−η, t0, x0) related
to the solution of (2.6), this yields that

∥y(t, τ0, y0)− x(t− η, t0, x0)∥ < ϵ1 for t ≥ τ0 + T ≥ t∗

which implies that there exists a τ0 < T1 < T such that

∥y(τ0 + T, τ0, y0)− x(τ0 + T − η, t0, x0)∥ = ϵ1.

Now, for any δ12, 0 < δ12 < δ10 and 0 < δ12 < δ20 we can
choose ϵ2 such that b2(ϵ1) > a2(ϵ2) and 0 < ϵ2 < ϵ1 < δ12.

Suppose that δ12 < ∥y0 − x0∥ < min{δ10, δ20} and
δ12 < |τ0 − t0| < min{δ10, δ20}. Let us define τ =

[Γ(q)(b2(ϵ1)−a2(ϵ2))
c2(ϵ1)

]
1
q , and T2 = T1 + τ.

Since, ∥y(t, τ0, y0)− x(t− η, t0, x0)∥ ≤ ϵ1 for t ≥ τ0 + T1,
choosing θ = ϵ1 and using (A2) with (3.9) we have for
t ∈ [τ0 + T1, τ0 + T2],

a2(
∥∥∥y(t)− ∼

x(t)
∥∥∥)≥ Vθ(t, y(t)−

∼
x(t))

≥ Vθ(τ0 + T1, y(τ0 + T1)−
∼
x(τ0 + T1))

− 1

Γ (q)

∫ t

τ0+T1

(t− s)
q−1

c2(
∥∥∥y(s)− ∼

x(s)
∥∥∥)ds

≥ b2(ϵ1)

− 1

Γ (q)

∫ t

τ0+T1

(t− s)
q−1

c2(
∥∥∥y(s)− ∼

x(s)
∥∥∥)ds

≥ b2(ϵ1)−
c2(ϵ1)

Γ (q)
[t− (τ0 + T1)]

q

Since, t− (τ0 + T1) > τ and a−1
2 exists, it follows that

a2(
∥∥∥y(t)− ∼

x(t)
∥∥∥)>

b2(ϵ1)−
c2(ϵ1)

Γ (q)
[
Γ (q) (b2(ϵ1)− a2(ϵ2))

c2(ϵ1)
] = a2(ϵ2).

This yields that



∥y(t, τ0, y0)− x(t− η, t0, x0)∥ > ϵ2 for t ∈ [τ0+T1, τ0+T2]

and therefore,

ϵ2 < ∥y(t, τ0, y0)− x(t− η, t0, x0)∥ < ϵ1

for t∈ [τ0 + T1, τ0 + T2].

This completes the proof. Then the solution y(t, τ0, y0)
of the system (2.7) through (τ0, y0) is initial time dif-
ference uniformly strictly asymptotically stable in frac-
tional case with respect to the solution x(t − η, t0, x0),
where x(t, t0, x0) is any solution of the system (2.6) for
t ≥ τ0 ≥ 0, t0 ∈ R+ and η = τ0 − t0.

Before we prove the general result in terms of the compar-
ison principle. Let us consider the uncoupled comparison
fractional differential systems in Caputo’s sense:{

(i)
c
Dq u1 = g1(t, u1), u1 (τ0) = u10 ≥ 0

(ii) cDqu2 = g2(t, u2), u2 (τ0) = u20 ≥ 0
(3.11)

where g1, g2 ∈ C
[
R2

+,R
]
The comparison system (3.11) is

said to be strictly stable in fractional case:

If given any ϵ1 > 0 and t ≥ τ0, τ0 ∈ R+, there exist a
δ1 > 0 such that

u10 ≤ δ1 implies u1(t) < ϵ1 for t ≥ τ0
and for every δ2 < δ1 there exists an ϵ2 > 0, 0 < ϵ2 < δ2
such that

u20 ≥ δ2 implies u2(t) > ϵ2 for t ≥ τ0.

Here, u1(t) and u2(t) are any solutions of (i) in (3.11) and
(ii) in (3.11); respectively.

The comparison system (3.11) is said to be strictly attrac-
tive in fractional case:

If given any α1 > 0, γ1 > 0, ϵ1 > 0 and τ0 ∈ R+, for every
α2 < α1, there exist ϵ2 < ϵ1, T1 = T1 (ϵ1, τ0) > 0 and
T2 = T2 (ϵ1, τ0) > 0 such that

u1 (t, τ0, u0) < ϵ1 for T1 + τ0 ≤ t ≤ T2 + τ0 when u10 ≤ α1

and

u2 (t, τ0, u0) > ϵ2 for T2+τ0 ≥ t ≥ T1+τ0 when u20 ≥ α2.

If T1and T2 are independent of τ0, then the comparison
system (3.11) is initial time difference uniformly strictly
attractive in fractional case for t ≥ τ0.

Following main result based on this definition that result
is formulated in terms of comparison principle.

Theorem 3.3: Assume that

(A1) for each µ , 0 < µ < ρ, Vµ ∈ C[R+ × Sρ,R+] and Vµ

is locally Lipschitzian in z and for (t, z) ∈ R+ × Sρ and
∥z∥ ≥ µ ,

b1(∥z∥) ≤ Vµ(t, z) ≤ a1(∥z∥), a1, b1 ∈ K,

c
∗D

q
+Vµ(t, z) ≤ g1(t, Vµ(t, z)); (3.12)

(A2) for each θ, 0 < θ < ρ, Vθ ∈ C[R+ × Sρ,R+] and Vθ

is locally Lipschitzian in z and for (t, z) ∈ R+ × Sρ and
∥z∥ ≤ θ,

b2(∥z∥) ≤ Vθ(t, z) ≤ a2(∥z∥), a2, b2 ∈ K,

c
∗D

q
+Vθ(t, z) ≥ g2(t, Vθ(t, z)); (3.13)

where g2(t, u) ≤ g1(t, u), g1, g2 ∈ C[R2
+,R], g1(t, 0) =

g2(t, 0) = 0 and z(t) = y(t, τ0, y0) − x(t − η, t0, x0) for
t ≥ τ0, y(t, τ0, y0) of the system (2.7) through (τ0, y0) and
x(t − η, t0, x0), where x(t, t0, x0) is any solution of the
system (2.6) for t ≥ τ0 ≥ 0, t0 ∈ R+ and η = τ0 − t0.

Then any strict stability concept in fractional case of the
comparison system implies the corresponding strict sta-
bility concept in fractional case of the solution y(t, τ0, y0)
of the system (2.7) through (τ0, y0) with respect to the
solution x(t−η, t0, x0) of the system (2.6) with initial time
difference where x(t, t0, x0) is any solution of the system
(2.6) for t ≥ τ0 ≥ 0, t0 ∈ R+.

Proof of Theorem 3.3: We will only prove the case of
strict uniformly asymptotically stability in fractional case.
Suppose that the comparison fractional differential sys-
tems in (3.11) is strictly uniformly asymptotically stable
in fractional case, then for any given ϵ1, 0 < ϵ1 < δ,
there exist a δ∗ > 0 such that u10 ≤ δ∗ implies that
u1(t, τ0, u10) < b1(ϵ1) for t ≥ τ0.

For this ϵ1 we choose δ1 and δ11, such that a1(δ
∗
1) ≤ δ∗

and δ∗1 < ϵ1 where δ∗1 = max{δ1, δ11}, then we claim that

∥y0 − x0∥ < δ1, |τ0 − t0| < δ11

imply that ∥y(t, τ0, y0)− x(t− η, t0, x0)∥ < ϵ1 for t ≥ τ0.
(3.14)

If it is not true, then there exist t1 and t2, t2 > t1 > τ0
and a solution z(t) of

cDqz =
∼
f (t, z), z(τ0) = y0 − x0 for t ≥ τ0

with |τ0 − t0| < δ11 and ∥y0 − x0∥ < δ1

∥y(t, τ0, y0)− x(t− η, t0, x0)∥< δ∗1 ,

∥y(t, τ0, y0)− x(t− η, t0, x0)∥= ϵ1 and

δ∗1 ≤ ∥y(t, τ0, y0)− x(t− η, t0, x0)∥ < ϵ1 for [t1, t2].

Choosing µ = δ∗1 and using the theory of differential
inequalities we get



b1(ϵ1) = b1(∥y(t2, τ0, y0)− x(t2 − η, t0, x0)∥)
≤ Vµ(t2, y(t2, τ0, y0)− x(t2 − η, t0, x0))

≤ r(t2, t1, Vµ(t1, y(t1, τ0, y0)− x(t1 − η, t0, x0)))

≤ r(t2, t1, a1(δ
∗
1))

≤ r(t2, t1, δ
∗)

< b1(ϵ1).

b1(ϵ1)< b1(ϵ1).

which is a contradiction. Here r(t, τ0, u10) is the maximal
solution of (3.11). Hence, (3.14) is true and we have uni-
formly stability in fractional case with initial time differ-
ence. Now, we shall prove strictly uniformly attractive in
fractional case with initial time difference.

For any given δ2, ϵ2 > 0, δ2 < δ∗ , we choose
−
δ2 and

−
ϵ2

such that a1(δ2) <
−
δ2 and b1(ϵ2) ≥

−
ϵ2. For these

−
δ2 and

−
ϵ2, since (3.11) is strictly uniformly attractive in fractional

case, for any
−
δ3 <

−
δ2 there exist

−
ϵ3 and T1 and T2 (we

assume T2 < T1) such that
−
δ3 < u10 = u20 <

−
δ2 implies

r(t, τ0, u10)≤ r(t, τ0,
−
δ2) <

−
ϵ2

ρ(t, τ0, u20)≥ ρ(t, τ0,
−
δ3) >

−
ϵ2

where r(t, τ0, u10) and ρ(t, τ0, u20) is the maximal solution
and minimal solution of (3.11) (i) and (3.11) (ii); respec-
tively.

Now, for any δ3, let b2(δ3) ≥
−
δ3. We choose ϵ3 such that

a2(ϵ3) <
−
ϵ3. Then by using comparison principle (3.11) (i)

and (A1), we have

b1(∥y(t, τ0, y0)− x(t− η, t0, x0)∥)≤ Vµ(t, y(t, τ0, y0)

−x(t− η, t0, x0))

≤ r(t, τ0, Vµ(τ0, y0 − x0))

≤ r(t, τ0, a1(∥y0 − x0∥))

≤ r(t, τ0,
−
δ2)

<
−
ϵ2 ≤ b1(ϵ2)

b1(∥y(t, τ0, y0)− x(t− η, t0, x0)∥)< b1(ϵ2)

since b−1
1 exists which implies that

∥y(t, τ0, y0)− x(t− η, t0, x0)∥ < ϵ2 for t ∈ [τ0+T2, τ0+T1].

Similarly, by using comparison principle in (3.11) (ii) and
(A2) we get

a2(∥y(t, τ0, y0)− x(t− η, t0, x0)∥)≥ Vθ(t, y(t, τ0, y0)

−x(t− η, t0, x0))

≥ ρ(t, τ0, Vθ(τ0, y0 − x0))

≥ ρ(t, τ0, b2(δ3))

≥ ρ(t, τ0,
−
δ3)

>
−
ϵ3 ≥ a2(ϵ3)

a2(∥y(t, τ0, y0)− x(t− η, t0, x0)∥)> a2(ϵ3)

since a−1
2 exists which implies that for

∥y(t, τ0, y0)− x(t− η, t0, x0)∥ > ϵ3 for t ∈ [τ0+T2, τ0+T1].
Hence, the solution y(t, τ0, y0) of the system (2.7) through
(τ0, y0) is strictly uniformly attractive in fractional case
with respect to the solution x(t− η, t0, x0) is any solution
of the system (2.6) for t ≥ τ0 ≥ 0, t0 ∈ R+. The proof is
completed.
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